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Abstract
This paper presents recent advances in the characterization of the intrinsic
structures in computer simulations of liquid surfaces. The use of
operational definitions for the intrinsic surface, associated with each molecular
configuration of a liquid slab, gives direct access to the intrinsic profile and to
the wavevector dependent surface tension. However, the characteristics of these
functions depend on the definition used for the intrinsic surface. We discuss
the pathologies associated with a local Gibbs dividing surface definition, and
consider the alternative definition of a minimal area surface, going though a set
of surface pivots, self-consistently chosen to represent the first liquid layer.

The classical capillary wave theory (CWT) [1, 2] assumes the existence of an intrinsic profile
which describes the structure of the liquid surface without the blurring effect of the capillary
wave (CW) fluctuations. There is an undetermined upper wavelength cut-off qu, used to
separate the low-q surface fluctuations from those typical of the bulk liquid [3]; and the choice
of qu should affect the shape of the intrinsic profile ρ̃(z, qu). Within the CWT hypothesis, the
mean density profile, averaged over a transverse area A ≡ L2, is the convolution of ρ̃(z, qu)

with a Gaussian of squared width �(L, qu), which adds the fluctuations of the intrinsic surface
for wavevector values 2π/L � q � qu. The validity of the CWT is well established for
quσ � 1, in terms of the molecular diameter σ ; however, the increasing accuracy of the x-ray
surface diffraction measurements [4–6] has pushed towards the use of the CWT to interpret
the experimental data up to atomic resolution, and to extend the theory with the use of a
wavevector dependent surface tension γ (q) [7], which reduces to the macroscopic value γ0

for qσ � 1. If, with growing q , γ (q) becomes much larger than γ0, then the CW spectrum
would die smoothly at large q , instead of having a sharp cut-off; and there would be a sharpest
intrinsic representation of the surface in which the full CW spectrum allowed by the system
size would be extracted. The x-ray reflectivity data for cold liquid metal surfaces [5, 6] were
interpreted in these terms, with a delta function to represent the first liquid layer in the intrinsic
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profiles, and a cut-off qu ≈ π/σ in the classical CWT, which should be interpreted [4] as the
effective sharp cut-off providing the same value of �(L, qu) (with constant γ0) as the total
CW fluctuation (with γ (q)) for all q � 2π/L.

Computer simulations of liquid slabs may be used to test the validity of that interpretation,
with any operational definition of the instantaneous intrinsic surface,ξ(R) = ∑

q ξ̂q exp(iq·R),
to be associated with the molecular positions ri ≡ (Ri , zi ), for i = 1 to N . The intrinsic density
profile may be obtained as the statistical average

ρ̃(z) = 1

A

〈
∑

i

δ(z − zi + ξ(Ri))

〉

, (1)

and the mean squared amplitude 〈|ξ̂q |2〉 gives directly the function

γ (q) = kT

q2〈|ξ̂q |2〉A
. (2)

Both ρ̃(z) and γ (q) would depend on the particular definition of the intrinsic surface associated
with each molecular configuration; different choices for ξ(R) would reproduce the same CW
spectrum for qσ � 1, but when the description is pushed to the range qσ ≈ 1 the fluctuation
spectrum of ξ(R) becomes strongly entangled with its definition.

The simplest definition of ξ(R) is a local version of the Gibbs dividing surface, applied
over prisms of transverse length ∼2π/qu, which has been used to evaluate γ (q) in several
models [8, 9], always in good agreement with the CWT assumption γ (q) ≈ γ0 for small q ,
but with the puzzling result of being a decreasing (rather than increasing) function of q , so that
the squared CW amplitude grows with q , without a natural upper cut-off for the CW spectrum.
This is produced by the failure in the separation of surface and bulk fluctuations, with that
definition of ξ(R); so that for q > π/σ the putative mean squared amplitude 〈|ξ̂q |2〉 becomes
proportional to the bulk structure factor of the liquid [10], rather than to the fluctuations of
the local position of the interface. The intrinsic profiles ρ̃(z, qu) evaluated with this ξ(R) give
the expected sharpening of the surface structure, with respect to the mean profile ρ(z, L) for
2π/L < qu < σ−1, but when the upper cut-off is pushed behind that limit ρ̃(z, qu) becomes
smoother, instead of sharper [12].

In recent works [11, 12] we have explored an alternative definition, which links ξ(R)

directly to a set of pivot molecules on the liquid surface, instead of relying on a density balance
across the interface. The intrinsic surface is defined as the minimal area surface, with an upper
Fourier component cut-off qmax ≈ 2π/σ , and going through a set of surface pivots. The key
point is a procedure to select those pivots at the most external molecules of the liquid slab,
segregated from those in the vapour by a simple percolation algorithm. In our test for simple
atomic liquids [11, 12], we start with a small initial set of surface pivots, and a very flat minimal
surface ξ(R); then we use a parameter τ ≈ 0.5σ to incorporate new pivots at those atoms on
the liquid surface separated from ξ(R) by a distance less than τ ; a rougher intrinsic surface is
then recalculated with the enlarged set of pivots, and the process is iterated until there were
no atoms with |ξ(Ri) − zi | � τ in the sample. The results for ρ̃(z, qmax) and γ (q) obtained
with this method, for several simple fluid models with pairwise isotropic interactions, were
discussed in our previous works [11, 12]; the dependence on the parameter τ is very sharp,
with an upper threshold, τthr, beyond which the number of surface pivots does not converge,
and ξ(R) becomes a meaningless rough surface cutting across the liquid slab. Values of τ

much lower than τthr produce unphysical shapes for the intrinsic profiles, while those within a
small range of τ < τthr have an aspect qualitatively similar to the intrinsic profiles extracted
from x-ray reflectometry for cold liquid metals [5, 6]. The number of pivot atoms per unit
area gives the two-dimensional density n0, associated with the delta-function in ρ̃(z, qmax), to
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represent the first liquid layer, followed by an oscillatory structure qualitatively similar to that
of the pair distribution function of the bulk liquid. This is the sharpest intrinsic view of the
interface, similar to that used in the interpretation of the x-ray reflectivity data, and described
as a distorted solid [5] with a sum of Gaussian layers of increasing width, to represent the
accumulation of fluctuations with respect to the nominal position of the layer, as the layer
index goes into the liquid bulk. Our computer simulations established the existence of strong
correlations between ρ̃(z, qmax) and ξ(R), which go beyond the CWT hypothesis [12], but
they may be systematically reduced with a less sharp representation of the surface, restricting
the shape of ξ(R) to Fourier components q � qu < qmax. The function γ (q) obtained with
our definition also depends on τ , and for the choice of this parameter leading to the best shape
for ρ̃(z, qmax) the function γ (q) goes rather flat to the macroscopic surface tension γ0 at low
q and increases rapidly as q approaches 2π/σ , so that the CW spectrum ends smoothly as we
approach the molecular limit for the corrugations of the intrinsic surface.

Although the results for ρ̃(z, qu), with several simple fluid models, are qualitatively
satisfactory [11, 12], the use of τ as a control parameter for the definition of ξ(R) presents
some problems. The self-consistent addition of new pivots has to separate the first from the
inner liquid layers, and obviously these are soft concepts for which we cannot expect a sharp
separation. The physical picture of the liquid surface given by our ρ̃(z, qmax) is a clear local
layering structure, but with stronger in-layer fluctuations as T increases. The choice of τ , or
any other specification in the definition of ξ(R), gives an (arbitrary) discrimination between
what is considered an inwards CW fluctuation, of the first liquid layer, and what is considered
an outwards fluctuation within the second liquid layer. The latter would contribute to the finite
width of the inner layer in ρ̃(z, qmax), while the former is ironed out in (1). Setting a minimum
distance, τ , from any of these second layer fluctuations to the intrinsic surface, and in any
sampled configuration, should produce a (sample and system) size dependence of the upper
threshold τthr , as in any percolation problem. In our application of the method to cold liquid
surfaces (with T/TC < 0.3), and with total sampled areas up to 106σ 2, that size dependence
was well below our accuracy for the determination of τthr , and hence irrelevant for practical
purposes. However, at higher temperatures the value of τthr was pushed down by a just small
number of configurations, and larger samples would push it to still lower values, while most
configurations would be better described by the intrinsic profiles with τ > τthr . The problem
becomes much more important when the method is applied to anisotropic molecular fluids [13]
since the layering defects are strongly enhanced by the disorder in the molecular orientations.

An alternative procedure explored here is to use the first layer density n0 as control
parameter, so that we describe all the configurations with exactly the same number of pivot
molecules, which are selected by self-consistent addition (one by one, or in small batches) of
those molecules which are closer to the minimal surface which goes through all the previously
selected pivots. The procedure is computationally more costly than the previous one, since it
requires more evaluations of the minimal surfaces, but still we may perform the calculations
for similar sample sizes as used before. For each configuration the minimum distance of
a non-pivot molecule to the final ξ(R) (calculated with exactly n0 A pivots), corresponds to
the value of the parameter τ in the previous definition; the average over configurations gives
〈τ 〉 ± �τ , as a function of the control parameter n0; equivalently to the results 〈n0〉 ± �n0,
for a fixed value of τ , with the other method. The qualitative difference is that increasing n0

gives always smooth variations of 〈τ 〉, while the increase of τ beyond τthr produces a sudden
increase of 〈n0〉. At low temperature, the existence of such a threshold helped to fix a small
range of reasonable values for the parameter τ for an isotropic and cold liquid surface.

In figure 1(a) we present the intrinsic profiles for a very cold liquid surface, T/TC ≈ 0.12,
near the triple point of a simple fluid with very soft core repulsion, the soft-alkali model of [14].
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Figure 1. Intrinsic profiles at the sharpest resolution, ρ̃(z, qmax), in atomic diameter units, σ .
Left panel: results for the soft-alkali model at T/TC ≈ 0.12; the broken lines are obtained with
our previous method and three values of τσ (0.46, 0.52 and 0.58). The present method gives the
full lines when the first layer density is set equal to its previous mean values (〈n0〉σ 2 = 0.69, 0.72
and 0.75). Right panel: results for the Lennard-Jones fluid at T/TC ≈ 0.56. The dotted line gives
the result with our previous method at the threshold value τσ ≈ 0.58. The full lines shown the
results of the present method for n0σ

2 = 0.62 (equal to the previous 〈n0〉) and two higher values,
0.7 and 0.8. In both panels the arrows show the first layer (δ-function) density.

The dashed lines give the results of our previous method, with three different values of τ ; while
the full lines give the results with fixed values of n0, set to be exactly the mean values 〈n0〉 with
the fixed τ procedure. The results show that (for reasonable values for the parameters) the
intrinsic profiles differ only in the small region (inset) with z ≈ τ ≈ σ/2, where the sharp step
produced with a fixed τ becomes now a more appealing smooth decay for fixed n0. The best
choice for n0 may be done in the same terms as for τ before, looking for the best Gaussian fit
of the second peak in ρ̃(z, qmax), and simultaneously for the best Gaussian fit of the first layer
for qu < qmax. Too low values of n0 are discarded by the presence of a shoulder in ρ̃(z, qmax)

at z ≈ 0.5, formed by the molecules which should had been naturally assigned to the first layer
rather than to the second one; on the other hand, too large values of n0 are identified by the
non-Gaussian structure of the first peak in ρ̃(z, qu), when qu is reduced below its maximum
value used for the selection of pivots. At the low temperature of the results in figure 1(a) we
obtain similar values for the best fitting n0 and for the best fitting τ , although the quality of the
Gaussian fits is clearly improved with the new method, since the sharp cut-off of ρ̃(z, qmax) at
z = τ is eliminated.

However, when the in-layer fluctuations become stronger, at the typical temperatures of
simple liquids, the value of τthr was lowered by a few configurations, well below what would
be the optimal value to get the best Gaussian fit in all the others. With the new method we may
explore values of n0 well above that of 〈n0〉 at τ = τthr, and improve the shape of the second
peak in ρ̃(z, qmax). This is clear in figure 1(b), for the Lennard-Jones fluid at T/TC = 0.56,
near its triple point; the dotted line corresponds to our previous results, with τthr ≈ 0.56σ ; and
the broken line in that figure gives the result with our new method, when the number of pivots is
set to take exactly the mean value 〈n0〉 = 0.62σ−2 obtained for that τthr. However, increasing
that value up to n0 = 0.8σ−2 gives the intrinsic profile represented by the full lines, with a
clearly more natural (Gaussian) shape for the layer around z = σ , and a slight shift in the inner
layer structure. That confirms, and somewhat improves, our previous claim of a strong surface
layering structure as a generic property of liquid interfaces, and not restricted to cold liquid
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metals. The smooth density profiles of the LJ liquid, when averaged over the typical transverse
sizes (L ∼ 10σ ) of computer simulations, hide intrinsic profiles with a structure qualitatively
similar to that of the liquid pair distribution function g(r). The only peculiarity of the cold
surfaces in liquid Hg or Ga is that the higher values of γ0 keep that oscillatory structure in
ρ(z, L), up to transverse sizes L > 300σ , within the range of experimental observation with
the strongly collimated x-ray beams of the synchrotron sources.

Besides giving a slightly stronger, and somewhat better, representation of the layering
structures at high T , the use of n0 as control parameter makes clear that the best representation
of the intrinsic surface is more ambiguous than with the sharper (but less natural) choice of τthr .
The best Gaussian fits to the intrinsic profiles cannot discern between the range 0.7 and 0.8σ−2

for the first layer density n0, clearly above the previous estimation, but also with a larger error
bar, as an intrinsic limit for determination of that quantity. Our previous claims [12] of strong
temperature and model dependences of n0, which could be taken as an intrinsic characteristics
of the liquid surfaces, have to be discarded as an artifact of the lowering of τthr by the stronger
in-layer fluctuations at high temperatures. The present estimation is n0 ≈ 0.75 ± 0.05σ−2,
apparently similar for the different simple fluid models analysed in our previous works. This
suggests a generic intrinsic structure, which describes, within the unavoidable ambiguity in
n0, the surface of any simple liquid with isotropic pair interactions, and which is probably
determined more by simple packing constraints than by the particular form of the interaction
potential. However, larger differences may appear between the surface intrinsic structures of
anisotropic molecular fluids or liquid metals.

The q-dependent surface tension γ (q), obtained from (2), depends also on the choice of
n0; hence it shares some ambiguity on what is the most natural choice, and it is important to
realize that such ambiguity is intrinsic to the concept of surface tension for curved interfaces.
Definitions like the local Gibbs dividing surface, which work well in the limit γ (q) → γ0

for qσ � 1, may produce unphysical values of γ (q) for qσ � 1, for the same reason that
they produce qualitatively wrong shapes for ρ̃(z, qu), i.e. because the so defined intrinsic
surfaces fail to describe the local position of the interface at that molecular resolution. On
the other hand, the intrinsic surfaces obtained with our method, for say n0 = 0.7 or 0.8σ−2,
give both a reasonable representation of that local surface and lead to qualitatively similar, but
quantitatively different, functions γ (q), represented in figure 2(a), for the soft-alkali model at
T/TC = 0.33. The lower value of n0 gives flatter intrinsic surfaces, and hence higher effective
surface tensions, while the rougher ξ(R), going through a larger number of surface pivots,
corresponds to lower values of γ (q). The vertical arrows give the corresponding values of the
effective upper cut-off, to reproduce within the classical CWT the mean square CW amplitude.
In figure 2(b) we represent the values of that effective upper cut-off, as functions of n0, for
different temperatures and model interactions. The values of n0 compatible with qualitative
good shapes of the intrinsic profiles ρ̃(z, qu) are included in the shadowed region, which leaves
a clear decay of qeff

u with increasing T , from values qeff
u ≈ π/σ , which are typically chosen

in the analysis of the experimental data [4], to about half that value at the triple point of the LJ
model.

The main conclusion of this work could be that a good operational definition of intrinsic
surface, to be used in computer simulations, is important to obtain an intrinsic representation
of free liquid surfaces, beyond the blurring effects of the CW fluctuations. The local Gibbs
dividing surface definition cannot be pushed down to the molecular scale, qσ ≈ 1; but other
choices, more directly tied to the local position of the surface, may be successfully used to
obtain the intrinsic profile and the effective surface tension γ (q), with the correct qualitative
features. Nevertheless, we have to make clear that (particularly at high temperatures) the
details of the definition still matter for the quantitative analysis of the results; and that there is
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Figure 2. Left panel: the q-dependent surface tension γ (q), in β = (kBT )−1 and atomic diameter
σ units, for the soft-alkali model at T/TC = 0.12. The full line is the result with a first layer
density n0σ

2 = 0.7 and the dashed line with n0σ
2 = 0.8. The arrows indicate the corresponding

values of the CWT effective upper cut-off qeff
u . The dotted line shows the macroscopic value of the

surface tension γ0. Right panel: the CWT effective upper cut-off qeff
u versus the first layer density

n0σ
2. The circles are the results for the soft-alkali model at T/TC = 0.12 (empty), T/TC = 0.33

(grey), and T/TC = 0.65 (black). The squares are for the Lennard-Jones model at T/TC = 0.56.
The shadowed region covers the values of n0 with a good shape for the intrinsic profiles.

no hope of a unique definition of ξ(R) which could correspond to the true intrinsic structure
of the surface. There are more or less useful definitions which do achieve, in a better or worse
way, the separation of the CW fluctuation spectrum from the bulk liquid correlation structure.
Moreover, we have to be aware of the lack of statistical independence between ξ(R)and ρ̃(z, qu)

when the intrinsic surface description is pushed down to the molecular scale [12], which would
require a reformulated CWT theory to interpret the increasingly accurate experimental results
from x-ray reflectometry.
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